392 research outputs found

    El Concepto de Polí­tica Cultural en el Proyecto de Autogestión Yugoslavo

    Get PDF
    The paper points to the importance of culture in the project of Yugoslav socialist self- management and explores, in the first place, the doctrinal interpretation of culture as a sector, as an integrative factor for the socio-political system, and as a regulator of values and concepts. Different modalities of cultural policy are explored in the context of socialist self-management, and a model for their classification is suggested, which can clarify more clearly the peculiarities of the cultural policy of socialist self-management and grasp their relevance for our time. Given the notion of culture as an integral part of the project of establishing a socialist self-managing society, also seen as its “core,” the failure of the project of Yugoslav socialist self-management could be viewed not as primarily a political or economic one but as a failure in the field of culture.Este artí­culo destaca la importancia de la cultura en el proyecto de autogestión socialista yugoslava. Explora, en primer lugar, la interpretación doctrinal de la cultura como sector, como factor integrador del sistema sociopolí­tico y como regulador de valores y conceptos. Se exploran diferentes modalidades de polí­tica cultural en el contexto de la autogestión socialista, y se sugiere un modelo para su clasificación, que puede aclarar de manera más efectiva las peculiaridades de la polí­tica cultural de autogestión socialista y comprender su relevancia para nuestro tiempo. Dada que la noción de cultura es una parte integral del proyecto de una sociedad socialista de autogestión, también vista como su "núcleo", el fracaso del proyecto de autogestión socialista yugoslava podrí­a verse no solo como una cuestión polí­tica o económica, sino además como un fracaso en el campo de la cultura

    Characterizing the Information Content of Cloud Thermodynamic Phase Retrievals from the Notional PACE OCI Shortwave Reflectance Measurements

    Get PDF
    We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the NASA MODIS, VIIRS, and the notional future PACE imager. The results show that two shortwave-infrared channels (2135 nm and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e. liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies

    Approaches and Aspects of Advanced Learning in Mechanical Engineering and Economics Students’ Classrooms

    Get PDF
    It is important to identify the situation our students encounter in the process of learning the English language, especially through ESP courses. We came to an idea to actively engage our students in the process of learning/acquisition and assessment, in order to encourage their learning efficiency. The crucial is students’ readiness to explore new technologies that can enhance their studying. Establishing proper environment for EMI is of great importance for our students, as well as for our country, in the light of world academic flows

    Regulation of TMPRSS6 by BMP6 and iron in human cells and mice.

    Get PDF
    Mutations in transmembrane protease, serine 6 (TMPRSS6), encoding matriptase-2, are responsible for the familial anemia disorder iron-refractory iron deficiency anemia (IRIDA). Patients with IRIDA have inappropriately elevated levels of the iron regulatory hormone hepcidin, suggesting that TMPRSS6 is involved in negatively regulating hepcidin expression. Hepcidin is positively regulated by iron via the bone morphogenetic protein (BMP)-SMAD signaling pathway. In this study, we investigated whether BMP6 and iron also regulate TMPRSS6 expression. Here we demonstrate that, in vitro, treatment with BMP6 stimulates TMPRSS6 expression at the mRNA and protein levels and leads to an increase in matriptase-2 activity. Moreover, we identify that inhibitor of DNA binding 1 is the key element of the BMP-SMAD pathway to regulate TMPRSS6 expression in response to BMP6 treatment. Finally, we show that, in mice, Tmprss6 mRNA expression is stimulated by chronic iron treatment or BMP6 injection and is blocked by injection of neutralizing antibody against BMP6. Our results indicate that BMP6 and iron not only induce hepcidin expression but also induce TMPRSS6, a negative regulator of hepcidin expression. Modulation of TMPRSS6 expression could serve as a negative feedback inhibitor to avoid excessive hepcidin increases by iron to help maintain tight homeostatic balance of systemic iron levels

    Probabilistic 3D surface reconstruction from sparse MRI information

    Full text link
    Surface reconstruction from magnetic resonance (MR) imaging data is indispensable in medical image analysis and clinical research. A reliable and effective reconstruction tool should: be fast in prediction of accurate well localised and high resolution models, evaluate prediction uncertainty, work with as little input data as possible. Current deep learning state of the art (SOTA) 3D reconstruction methods, however, often only produce shapes of limited variability positioned in a canonical position or lack uncertainty evaluation. In this paper, we present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction. Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets whilst modelling the location of each mesh vertex through a Gaussian distribution. Prior shape information is encoded using a built-in linear principal component analysis (PCA) model. Extensive experiments on cardiac MR data show that our probabilistic approach successfully assesses prediction uncertainty while at the same time qualitatively and quantitatively outperforms SOTA methods in shape prediction. Compared to SOTA, we are capable of properly localising and orientating the prediction via the use of a spatially aware neural network.Comment: MICCAI 202

    The effects of CO2, climate and land-use on terrestrial carbon balance, 1920-1992: An analysis with four process-based ecosystem models

    Get PDF
    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system

    In Vivo Delivery of Gremlin siRNA Plasmid Reveals Therapeutic Potential against Diabetic Nephropathy by Recovering Bone Morphogenetic Protein-7

    Get PDF
    Diabetic nephropathy is a complex and poorly understood disease process, and our current treatment options are limited. It remains critical, then, to identify novel therapeutic targets. Recently, a developmental protein and one of the bone morphogenetic protein antagonists, Gremlin, has emerged as a novel modulator of diabetic nephropathy. The high expression and strong co-localization with transforming growth factor- β1 in diabetic kidneys suggests a role for Gremlin in the pathogenesis of diabetic nephropathy. We have constructed a gremlin siRNA plasmid and have examined the effect of Gremlin inhibition on the progression of diabetic nephropathy in a mouse model. CD-1 mice underwent uninephrectomy and STZ treatment prior to receiving weekly injections of the plasmid. Inhibition of Gremlin alleviated proteinuria and renal collagen IV accumulation 12 weeks after the STZ injection and inhibited renal cell proliferation and apoptosis. In vitro experiments, using mouse mesangial cells, revealed that the transfect ion of gremlin siRNA plasmid reversed high glucose induced abnormalities, such as increased cell proliferation and apoptosis and increased collagen IV production. The decreased matrix metalloprotease level was partially normalized by transfection with gremlin siRNA plasmid. Additionally, we observed recovery of bone morphogenetic protein-7 signaling activity, evidenced by increases in phosphorylated Smad 5 protein levels. We conclude that inhibition of Gremlin exerts beneficial effects on the diabetic kidney mainly through maintenance of BMP-7 activity and that Gremlin may serve as a novel therapeutic target in the management of diabetic nephropathy

    Trauma of the frontal region is influenced by the volume of frontal sinuses. A finite element study

    Get PDF
    Anatomy of frontal sinuses varies individually, from differences in volume and shape to a rare case when the sinuses are absent. However, there are scarce data related to influence of these variations on impact generated fracture pattern. Therefore, the aim of this study was to analyse the influence of frontal sinus volume on the stress distribution and fracture pattern in the frontal region. The study included four representative Finite Element models of the skull. Reference model was built on the basis of computed tomography scans of a human head with normally developed frontal sinuses. By modifying the reference model, three additional models were generated: a model without sinuses, with hypoplasic, and with hyperplasic sinuses. A 7.7 kN force was applied perpendicularly to the forehead of each model, in order to simulate a frontal impact. The results demonstrated that the distribution of impact stress in frontal region depends on the frontal sinus volume. The anterior sinus wall showed the highest fragility in case with hyperplasic sinuses, whereas posterior wall/inner plate showed more fragility in cases with hypoplasic and undeveloped sinuses. Well-developed frontal sinuses might, through absorption of the impact energy by anterior wall, protect the posterior wall and intracranial contents.This work was supported in part by grants from the Serbian Ministry of Education, Science and Technological Development III45005, III41007, ON174028 and EU project FP7 ICT SIFEM 600933
    corecore